Introduction to Bioinformatics 2. DNA Sequence Retrieval and comparison

Benjamin F. Matthews
United States Department of Agriculture
Soybean Genomics and Improvement
Laboratory
Beltsville, MD 20708
matthewb@ba.ars.usda.gov

What we will cover today

- ★ Retrieving a known DNA sequence
- ★ Similarity searching with a DNA sequence
- **BLAST**

You read a paper and..

- **≭** Is full-length clone of gene available?
- ★ Is at least some of the DNA sequence available? (EST sequence)?

Finding Sequences in Databases

- *The public DNA and protein sequence databases are huge.
- In order for these databases to be useful, the data must be readily accessible to researchers.

What Are You Looking For?

- * A gene?
 - DNA or protein sequence?
- ** DNA sequences are essentially all in GenBank
 - Genomic, mRNA, cDNA, EST?
- Reproteins are harder to pin down
 - GenPept (GenBank Peptides) is huge and poorly annotated - lots of junk
 - SwissProt is carefully annotated, but not fully comprehensive
 - PIR is somewhere in between

Large Databases

- ** Once upon a time, **GenBank** sent out sequence updates on CD-ROM disks a few times per year.
- Now **GenBank** is over 95 Gigabytes (28 billion bases)
- Most biocomputing sites update their copy of **GenBank** every day over the internet.
- Scientists access GenBank directly over the Web

You can search DNA sequence database

- * Retrieve known sequences by
 - Keyword search
 - Accession numbers
- ★ If you know some DNA sequence
 - Compare your DNA sequence with those in database
 - Basic Local Alignment Search Tool (BLAST) searches

Retrieve a DNA sequence

- ****** ENTREZ
 - http://www.ncbi.nlm.nih.gov/Entrez/
- Click Nucleotide
 - GenBank
 - OR

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucle otide

- * Accession number
- Keyword search

Entrez is a Tool for Finding Sequences

- GenBank is managed by the NCBI (National Center for Biotechnology Information) which is a part of the US National Library of Medicine.
- NCBI has created a Web-based tool called **Entrez** for finding sequences in **GenBank**.

http://www.ncbi.nlm.nih.gov

- Each sequence in **GenBank** has a unique "accession number".
- Entrez can also search for keywords such as gene names, protein names, and the names of orgainisms or biological functions

Entrez is a Database

- ** The Entrez database contains all of the nucleotide and protein sequences in GenBank (updated daily) along with all of the literature in MEDLINE and the 3-D protein structures in PDB (Protein Data Base).
- **Entrez** is much more than a database, it is a both a powerful search engine and a pre-computed list of relationships amnog all of its data elements

Entrez is Internally Cross-linked

- DNA and protein sequences are linked to other similar sequences
- ★ Medline citations are linked to other citations that contain similar keywords
- ★ 3-D structures are linked to similar structures

GenBank

- ** National Institute of Health, National Library of Medicine, National Center for Biotechnology Information
- * http://www.ncbi.nlm.nih.gov/
- ** http://www.ncbi.nlm.nih.gov/Genbank/Genban

- * Retrieve a sequence from GenBank
- * Analyze raw sequence data
 - Base calling
 - Editing
 - Obtaining a consensus sequence
 - Translating
 - Restriction mapping
 - Similarity comparisons
 - Motif searches

Accession Numbers!!

- ★ Databases are designed to be searched by accession numbers (and locus IDs)
- *These are guaranteed to be non-redundant, accurate, and not to change.
- Searching by gene names and keywords is inexact and retrieves more than one record usually

Flat file format

- ★ Organized in a structured manner
- One big file
- ** Large body of information assembled and distributed in consistent format
- * Lack support for procession transactions (inserts and updates)

Some Fields of GenBank Record

- Locus Name
- * Sequence length
- Molecule type
- **Definition**
- GenBank accession number
- * Version
- * Keywords
- * Source
- *** Organism**
- Reference

- * Reference
- ***** Authors
- **X** Title
- ***** Journal
- **#** Medline
- * Other references
- **#** features
- * Amino acid translation
- Nucleotide sequence

Locus Name

Unique

- **Up to 10 characters**
- # 6 character
 - Genus species
- **8** characters
 - Just accession number
- ** Better to search for accession number than Locus Name

GenBank Accession Number

- ***** Unique identifier for sequence record
- Usually a combination of letter(s) and numbers
- ★ Do not change even if information changes
- *Newer accession numbers to new submission using some of this data

Refine the Query

- Methods of the Control of the Contro
- The "History" feature allows you to combine any of your past queries.
- The "Limits" feature allows you to limit a query to specific organisms, sequences submitted during a specific period of time, etc.
- [Many other features are designed to search for literature in MEDLINE]

Find related sequences Find ESTs If not full-length, may allow assembly from ESTs Find other family members Organization and function Find similar genes from other cultivars SNP discovery Find similar genes from other organisms Phylogenetic relationships

ESTs (Expressed Sequence Tags)

- ** partial cDNA sequences
- **# dbEST at NCBI**
 - •a comprehensive set of all public EST data
- ****** UniGene at NCBI
 - •clusters of ESTs and know genes from key species
 - does NOT have consensus sequences
 - has far too many clusters to be representative of real genes (129 K human clusters)

Find related DNA sequences

- ★ Similarity Search (BLAST)
- * NCBI GenBank database

- ★ Compare your sequence with database
- * http://www.ncbi.nlm.nih.gov/BLAST/
- * Nucleotide
- * Protein
- Targeted to a genome

BLAST

- Basic Local Alignment Search Tool
- Local alignment
- Tutorial at:
 http://www.ncbi.nlm.nih.gov/Education/BLAS
 Tinfo/information3.html

BLAST

- * Discontiguous Mega BLAST
 - Comparison of diverged sequences especially from different organisms
 - Alignments with low degree of identity
 - Looks for hits in "non-consecutive positions"
- Mega BLAST
 - Slight differences in similarity
 - Not effective at low degree of identity
 - Faster; handles longer sequences
- **BLAST**
 - Local alignment tool
 - http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/inf ormation3.html

You have a sequence. Does it have similarity to other known genes??? Copy DNA sequence from file

GGTTGTGCCAAGTCCATTTTCTATTGACTTCTTCCTCATTTGATCCAAGATGAACAGCAC
ACATGCACTTGACATGTTACCATACTCGCTAAGCACGTGTCTAGTAGCTTCCATTTTTTC
ATGCTTCAATCCTAACTTAGCCTCAACTTGGTCCAAAATTGCTGGTCCACCAGGGTGTGC
AATCCAAAAGATAGAGTTGTAATCATCAATTTCTAAGGGTTTGAAGGCTTCAACCAAGGC
CTTTTCGATGTTCTTGGAGATGAGTCCAGGAACATCCTTGAGGAGATGGAAAGTGAGTCC
TACTTGGCGAAGGTGGCCATCAATAGCGCCTTCGCTGTCTGGAAGGATTGTTTTGTGCAGT
CCACACAAGCTCAAACAAAGGCTTTTCAGCTGCAGAGGATCTGATCCAACAATGACAGC
GCTGCACCATCTCCAAACAAAGGCTTGCCCCACAAGGCTGTCAAGATGTGTTCACTCGG

GCCACGAAATGTGACTGCTGTGATCTCCGA

FASTA/BLAST Statistics

- E() value is equivalent to standard P value
- Significant if E() < 0.05 (smaller numbers are more significant)
 - The E-value represents the likelihood that the observed alignment is due to chance alone. A value of 1 indicates that an alignment this good would happen by chance with any random sequence searched against this database.
- The histogram should follow expectations (asterisks) except for hits

Interpretation of output

- very low E() values (e-100) are homologs or identical genes
- moderate E() values are related genes
- long list of gradually declining of E() values indicates a large gene family
- long regions of moderate similarity are more significant than short regions of high identity

What this does for you

- *You identified what gene is encoded by your clone's sequence
- ★ Perhaps you may have found the function of your gene
- *You have more cDNA sequences to add together to build a consensus and perhaps a full-length cDNA

Biological Relevance

- * It is up to you, the biologist to scrutinize these alignments and determine if they are significant.
- ** Were you looking for a short region of nearly identical sequence or a larger region of general similarity?
- * Are the mismatches conservative ones?
- * Are the matching regions important structural components of the genes or just introns and flanking regions?

Borderline similarity

- ★ What to do with matches with E() values in the 0.5 -1.0 range?
- * this is the "Twilight Zone"
- * retest these sequences and look for related hits (not just your original query sequence)
- ★ similarity is transitive:

 if A~B and B~C, then A~C

Advanced Similarity Techniques

Automated ways of using the results of one search to initiate multiple searches

- ** INCA (Iterative Neighborhood Cluster Analysis) http://itsa.ucsf.edu/~gram/home/inca/
 - Takes results of one BLAST search, does new searches with each one, then combines all results into a single list
 - JAVA applet, compatibility problems on some computers

R PSI BLAST

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/psi1.html

- Creates a "position specific scoring matrix" from the results of one BLAST search
- Uses this matrix to do another search
- builds a family of related sequences
- can't trust the resulting e-values

FASTA format

- * One of three formats used for sequences
- ** Begins with single-line description followed by sequence data
- Description line starts with ">"
- ****** Example:
- ⇒ 3i|532319|pir|TVFV2E|TVFV2E envelope protein ELRLRYCAPAGFALLKCNDADYDGFKTNCSNVSVVHCTNLMNTTVTTGLLLNGSYSENRT QIWQKHRTSNDSALILLNKHYNLTVTCKRPGNKTVLPVTIMAGLVFHSQKYNLRLRQAWC HFPSNWKGAWKEVKEEIVNLPKERYRGTNDPKRIFFQRQWGDPETANLWFNCHGEFFYCK MDWFLNYLNNLTVDADHNECKNTSGTKSGNKRAPGPCVQRTYVACHIRSVIIWLETISKK TYAPPREGHLECTSTVTGMTVELNYIPKNRTNVTLSPQIESIWAAELDRYKLVEITPIGF APTEVRRYTGGHERQKRVPFVXXXXXXXXXXXXXXXXXXXXXVQSQHLLAGILQQQKNL LAAVEAQQQMLKLTIWGVK

The nucleic acid codes supported are:

A --> adenosine M --> A C (amino) C --> cytidine S -> G C (strong) G --> guanine W --> A T (weak) T --> thymidine B->GTC D-->GAT U --> uridine R --> G A (purine) H-->ACT Y --> T C (pyrimidine) V->GCA K --> G T (keto) N --> A G C T (any)

- gap of indeterminate length

accepted amino acid codes are:

A alanine

B aspartate or asparagine

C cystine D aspartate

E glutamate

F phenylalanine

G glycine H histidine

I isoleucine

K lysine

L leucine M methionine

N asparagine

- gap of indeterminate length

P proline Q glutamine R arginine

S serine T threonine

U selenocysteine

V valine W tryptophan Y tyrosine

Z glutamate or glutamine

X any

* translation stop

Types of data integrated in genome browsers

- Genomic sequence
- · RefSeq mRNAs (non-redundant)
- · GenBank mRNAs (redundant)
- ESTs
- Gene predictions
- SNPs
- Homologous sequences from other organisms
- STSs

Other Sequence Search Tools

- SRS (Sequence Retrival Service) was created by Dr. Thure Etzold: [CABIOS 9(1); 49-57 (1993)]
- It is a meta search engine for all types of biological data in hundreds of databases as well as about 20 sequence analysis programs
- SRS can be accessed over the WWW from many servers (mostly in Europe):

http://srs.ebi.ac.uk/ http://www.infobiogen.fr/srs6bin/cgi-bin/wgetz?-page+top http://www.sanger.ac.uk/srs6bin/cgi-bin/wgetz?-page+top http://iubio.bio.indiana.edu/srs6bin/cgi-bin/wgetz?-page+top

Why So Many Databases?

- ★ If GenBank has all sequence data and Entrez is such a good query tool, then why are there so many other sequence databases?
 - Specialized data (single species, immunoglobulins, etc.)
 - Better annotation (i.e. SwissProt)
 - Sequences linked to other data (ACEDB)
 - Subbornness and local pride EMBL, DDBJ
- ** Well designed databases are interlinked with others for supplemental data
- * It is very hard to get all relevant information across all databases for any gene

Other Genetic Databases

- Genome Sequence where does a gene fall on the genome
 - integrate multiple layers of information
 Sequence contigs, mRNAs, predicted exons, etc.
 - Single species?
- ★ ESTs: dbEST @ NCBI
- * SNPs: dbSNP @ NCBI,

http://snp.cshl.org (SNP Consortium)

- Metabolism/Pathways
- Gene Function (Genome Ontology)
- Protein motifs/domains and protein families

Genome Databases

New area - in desperate need of development

Chromosomes::Sequence::Contigs::Clones::

STS Markers::Genetic Markers::Genes::

Features::Expression data::Phenotype

No single database can hold it all

UCSC is probably the best right now genome.ucsc.edu

Need a data exchange and linkage infrastructure

European Bioinformatics Institute

- * Products and services
- Databases
 - Literature
 - Microarray
 - nucleotide
- Toolbox with software
 - Similarity searches
 - Protein function
 - Sequence analysis
 - Structure
- * http://www.ebi.ac.uk/

Database Search Strategies

- ★ General search principles not limited to sequence (or to biology)
- ★ Start with broad keywords and narrow the search using more specific terms
- * Try variants of spelling, numbers, etc.
- ★ Search all relevant databases
- *****Be persistent!!

What we covered today

- ** Retrieving a known DNA sequence
- ★ Similarity searching with a DNA sequence
- **BLAST**